500彩票app客户端|500彩票app投注
500彩票app代理2023-01-31 16:05

500彩票app客户端

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

【网络中国节·诗画节气】小寒:莫怪严凝切,春冬正月交******

   【网络中国节·诗画节气】

小寒:莫怪严凝切,春冬正月交

  作者:侯楠楠

  小寒是二十四节气中倒数第二个节气。《月令七十二候集解》中记载:“十二月节,月初寒尚小,故云。月半则大矣。”也就是说,小寒之“小”的意思是天气寒冷,但还没有冷到极点。小寒三候为“雁北乡,鹊始巢,雉始雊”,因为感受到阳气生发,大雁开始向北迁移,喜鹊开始筑巢,为繁衍做准备(快过年了,但此处没有催婚的意思),“雊”意为野鸡鸣叫,此时,野鸡也感受到阳气萌动开始鸣叫。“禽鸟得气之先”,古人认为禽鸟在感知时节变化方面独具天赋,在二十四节气中,小寒和白露是完全以鸟类作为物候标识的。

(点击图片观看动态海报)

  《敦煌二十四节气》原画出自《不可思议的敦煌·与万物共生长》创作展——最佳创作团队奖「豆荚创意」小朋友们的集体创作。动画制作:满晨

  进入小寒一般就进入了腊月,临近过年,人们开始忙着写春联、剪窗花,采购年画、鞭炮等各类年货,为即将到来的春节作准备。此时,北方地区的河水已经冻得足够结实,人们开始在冰面上嬉戏玩乐,古时称为“冰戏”,《宋史》中就有“故事斋宿,幸后苑,作冰戏”的记载。除此之外,有的地方还有进行“腊祭”的习俗,祭祀祖先和众神,祈求来年农作物丰收。

  “三九补一冬,来年无病痛”,冬季要进补,而小寒时节尤为重要。除了在冬季出场率最高的羊肉,江苏一些地方会在小寒时煮菜饭吃,用“矮脚黄”(小白菜的一个品种)与咸肉片、香肠或是板鸭搭配,加上生姜粒与糯米一起煮,广东地区的糯米饭也与之相似。天津地区则有吃黄芽菜的习俗,黄芽菜即白菜芽,冬至后将白菜割去茎叶,只留菜心,覆盖勿透气,半月后取食,为冬日蔬菜不足的餐桌增添了脆爽之味。

  俗话说,“小寒大寒,冻成一团”,小寒和大寒时期,基本上是一年中最冷的时候。不过,小寒之“小”,真的意味着还不够冷吗?民间常说“冷在三九”,而“三九”基本上处于小寒节气内。我们之前辨析过大暑和小暑哪个节气更热,同样地,根据气象资料可以看到,只有少数年份的大寒气温低于小寒,因此,在寒冷这方面,“小寒胜大寒,常见不稀罕”,小寒是当之无愧的内卷王。

  除了“真冷”以外,我们该如何优雅地表达寒冷?杜甫说“霜严衣带断,指直不得结”,天气太冷,手指冻得僵直,连断了的衣带都不能系上;李白说“素手抽针冷,那堪把剪刀”,做针线时,连抽针都冷,更别说拿剪刀去裁衣服了;孟郊说“百泉冻皆咽,我吟寒更切”,因为天冷,连泉水流动地声音都像是在哽咽,更别说人了;陶渊明说“凄凄岁暮风,翳翳经日雪”,一整天又刮风又下雪,冷不冷就不用说了吧?

  天气虽冷,但古人认为,只有小寒、大寒“冻透了”,来年开春之后才能顺利回暖。民谚说“小寒寒,惊蛰暖。小寒暖,倒春寒。小寒不寒,清明泥潭。小寒大寒大日头,来年开春冻死牛”,就是通过小寒大寒的气温来判断来年的天气,甚至还可以通过小寒大寒时的降水情况观测小暑大暑的旱涝,“小寒大寒不下雪,小暑大暑田开裂”,就是说,小寒大寒如果不下雪,小暑大暑时节就会干旱。小寒时节,北方大部分地区已经没有太多的农活,主要任务是做好畜舍保暖、窖藏、造肥积肥等工作,正如农谚所说“小寒时处二三九,天寒地冻北风吼。窖坑栏舍要防寒,瓜菜薯窖严封口”;另外就是要防止积雪冻雨压断竹林果木,适时果树进行冬剪。

  不过,小寒时节也不尽是萧索之景。南北朝时期《荆楚岁时记》中记载“始梅花,终楝花,凡二十四番花信风”,二十四番花信风,就始于小寒时的梅花。文人墨客都爱赏梅,喜欢其迎寒绽放的特点并将其视为值得赞颂的高洁品格。王安石咏梅,说“遥知不是雪,为有暗香来”;王冕咏梅,说“不要人夸好颜色,只留清气满乾坤”;崔道融咏梅,说“朔风如解意,容易莫摧残”,这是把梅花当主角写的。宋朝诗人杜耒请朋友到家里围炉煮茶,把梅花当作气氛组,说“寻常一样窗前月,才有梅花便不同”,十分风雅;不过,最有名的还是“踏雪寻梅”的男主孟浩然,“园中有早梅,年例犯寒开”,踏雪寻梅是孟浩然的行为艺术,他为了找创作灵感,骑着驴去追寻梅花的踪迹。其实大家想一想这个场景,一个大男人骑着驴去找梅花,似乎并没有那么唯美。但对于诗人来说,灵感乍现的时刻总是可遇不可求,踏雪寻梅的意境自此为人津津乐道,孟浩然也没想到,找灵感的他成了后来很多人的艺术创作灵感。

  “莫怪严凝切,春冬正月交”,梅花的盛开是小寒带来的希望,严冬进入倒计时,时光如梭,春归有期。

光明网×敦煌画院

 

中国网客户端

国家重点新闻网站,9语种权威发布

500彩票app地图